Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins

نویسندگان

  • Chad Haynes
  • Lilia M. Iakoucheva
چکیده

Serine/arginine-rich (SR) splicing factors play an important role in constitutive and alternative splicing as well as during several steps of RNA metabolism. Despite the wealth of functional information about SR proteins accumulated to-date, structural knowledge about the members of this family is very limited. To gain a better insight into structure-function relationships of SR proteins, we performed extensive sequence analysis of SR protein family members and combined it with ordered/disordered structure predictions. We found that SR proteins have properties characteristic of intrinsically disordered (ID) proteins. The amino acid composition and sequence complexity of SR proteins were very similar to those of the disordered protein regions. More detailed analysis showed that the SR proteins, and their RS domains in particular, are enriched in the disorder-promoting residues and are depleted in the order-promoting residues as compared to the entire human proteome. Moreover, disorder predictions indicated that RS domains of SR proteins were completely unstructured. Two different classification methods, the charge-hydropathy measure and the cumulative distribution function (CDF) of the disorder scores, were in agreement with each other, and they both strongly predicted members of the SR protein family to be disordered. This study emphasizes the importance of the disordered structure for several functions of SR proteins, such as for spliceosome assembly and for interaction with multiple partners. In addition, it demonstrates the usefulness of order/disorder predictions for inferring protein structure from sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.

Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing arginine/serine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a novel member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif a...

متن کامل

Phosphorylation drives a dynamic switch in serine/arginine-rich proteins.

Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dy...

متن کامل

Characterization of a Nove1 ArginineEerine-Rich Splicing Factor in Arabidopsis

Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing argininekerine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a nove1 member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif an...

متن کامل

Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in Mammalian cells lacking topoisomerase I.

DNA topoisomerase I (Topo I) specifically phosphorylates arginine-serine-rich (SR proteins) splicing factors and is potentially involved in pre-mRNA-splicing regulation. Using a Topo I-deficient murine B lymphoma-derived subclone (P388-45/C) selected for its resistance to high dosage of the antitumor drug camptothecin, we show that Topo I depletion results in the hypophosphorylation of SR prote...

متن کامل

Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing.

Two distinct functions have been proposed for the serine-arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein-protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006